MathDB
folklore

Source: Moldova TST 2018, b6

April 6, 2018
inequalitiesthree variable inequalityalgebra

Problem Statement

Let a,b,ca,b,c be positive real numbers such that a+b+c=3a+b+c=3. Show that a1+b2+b1+c2+c1+a232.\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\geq \frac{3}{2}.