MathDB
Putnam 2003 A2

Source:

June 22, 2011
Putnaminequalitiescollege contestsPutnam inequalities

Problem Statement

Let a1,a2,,ana_1, a_2, \cdots , a_n and b1,b2,,bnb_1, b_2,\cdots, b_n be nonnegative real numbers. Show that (a1a2an)1/n+(b1b2bn)1/n((a1+b1)(a2+b2)(an+bn))1/n(a_1a_2 \cdots a_n)^{1/n}+ (b_1b_2 \cdots b_n)^{1/n} \le ((a_1 + b_1)(a_2 + b_2) \cdots (a_n + b_n))^{1/n}