MathDB
Miklós Schweitzer 1960- Problem 6

Source:

November 21, 2015
college contestsreal analysis

Problem Statement

6. Let {nk}k=1\{ n_k \}_{k=1}^{\infty} be a stricly increasing sequence of positive integers such that
limknk12k=\lim_{k \to \infty} n_k^{\frac {1}{2^k}}= \infty
Show that the sum of the series k=11nk\sum_{k=1}^{\infty} \frac {1}{n_k} is an irrational number. (N. 19)