MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania Team Selection Test
2013 Romania Team Selection Test
1
Unusual inequality!
Unusual inequality!
Source: Romania TST 2013 Day 5 Problem 1
January 21, 2015
inequalities
trigonometry
inequalities unsolved
Problem Statement
Let
n
n
n
be a positive integer and let
x
1
x_1
x
1
,
…
\ldots
…
,
x
n
x_n
x
n
be positive real numbers. Show that:
min
(
x
1
,
1
x
1
+
x
2
,
⋯
,
1
x
n
−
1
+
x
n
,
1
x
n
)
≤
2
cos
π
n
+
2
≤
max
(
x
1
,
1
x
1
+
x
2
,
⋯
,
1
x
n
−
1
+
x
n
,
1
x
n
)
.
\min\left ( x_1,\frac{1}{x_1}+x_2, \cdots,\frac{1}{x_{n-1}}+x_n,\frac{1}{x_n} \right )\leq 2\cos \frac{\pi}{n+2} \leq\max\left ( x_1,\frac{1}{x_1}+x_2, \cdots,\frac{1}{x_{n-1}}+x_n,\frac{1}{x_n} \right ).
min
(
x
1
,
x
1
1
+
x
2
,
⋯
,
x
n
−
1
1
+
x
n
,
x
n
1
)
≤
2
cos
n
+
2
π
≤
max
(
x
1
,
x
1
1
+
x
2
,
⋯
,
x
n
−
1
1
+
x
n
,
x
n
1
)
.
Back to Problems
View on AoPS