MathDB
International competition SRMC 2003 P-3

Source:

September 8, 2010
algebra proposedalgebra

Problem Statement

Let 0<a<b<10<a<b<1 be reals numbers and g(x)=\left\{\begin{array}{cc}x+1-a,&\mbox{ if } 0n+1n+1 reals numbers 0<x0<x1<...<xn<10<x_0<x_1<...<x_n<1, for which g[n](xi)=xi (0in)g^{[n]}(x_i)=x_i \ (0 \leq i \leq n). Prove that there exists a positive integer NN, such that g[N](x)=xg^{[N]}(x)=x for all 0<x<10<x<1.
(g[n](x)=g(g(....(g(x))....))n timesg^{[n]}(x)= \underbrace{g(g(....(g(x))....))}_{\text{n times}})
Official solution [url=http://www.artofproblemsolving.com/Forum/viewtopic.php?f=125&t=365714&p=2011659#p2011659]here