MathDB
Sum of powers of cos is constant

Source: Serbia 2024 MO Problem 5

April 4, 2024
algebra

Problem Statement

Let n3n \geq 3 be a positive integer. Find all positive integers kk, such that the function f:RRf:\mathbb{R} \rightarrow \mathbb{R} defined by f(x)=cosk(x)+cosk(x+2πn)++cosk(x+2(n1)πn)f(x)=\cos^k(x)+\cos^k(x+\frac{2\pi}{n})+\ldots +\cos^k(x+\frac{2(n-1)\pi}{n}) is constant.