MathDB
Trivial by direct computation

Source: HMIC 2022/3

April 8, 2022
algebranumber theory

Problem Statement

For a nonnegative integer nn, let s(n)s(n) be the sum of the digits of the binary representation of nn. Prove that n=1220221(1)s(n)n+2022>0.\sum_{n=1}^{2^{2022}-1} \frac{(-1)^{s(n)}}{n+2022}>0.