MathDB
SMT 2022 Discrete Tiebreaker #2

Source:

April 1, 2023

Problem Statement

Let aa, bb, cc be the solutions to x3+3x21=0x^3+3x^2-1=0. Define Sn=an+bn+cnS_n=a^n+b^n+c^n. Given that there are integers 0i,j,k360\le i,j,k\le36 such that Snin+jn+kn(mod37)S_n\equiv i^n+j^n+k^n\pmod{37} for all positive integer nn, determine the product ijkijk.