MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2003 District Olympiad
2
Digits
Digits
Source: RMO 2003, District Round
May 29, 2006
quadratics
algebra
quadratic formula
Problem Statement
Find
n
∈
N
\displaystyle n \in \mathbb N
n
∈
N
,
n
≥
2
\displaystyle n \geq 2
n
≥
2
, and the digits
a
1
,
a
2
,
…
,
a
n
\displaystyle a_1,a_2,\ldots,a_n
a
1
,
a
2
,
…
,
a
n
such that
a
1
a
2
…
a
n
‾
−
a
1
a
2
…
a
n
−
1
‾
=
a
n
.
\displaystyle \sqrt{\overline{a_1 a_2 \ldots a_n}} - \sqrt{\overline{a_1 a_2 \ldots a_{n-1}}} = a_n .
a
1
a
2
…
a
n
−
a
1
a
2
…
a
n
−
1
=
a
n
.
Back to Problems
View on AoPS