MathDB
Miklós Schweitzer 1955- Problem 3

Source:

September 30, 2015
functioncollege contests

Problem Statement

3. Let the density function f(x)f(x) of the random variable ξ\xi bean even function; let further f(x)f(x) be monotonically non-increasing for x>0x>0. Suppose that
D2=x2f(x)dxD^{2}= \int_{-\infty }^{\infty }x^{2}f(x) dx exists. Prove that for every non negative λ\lambda
P(ξλD)11+λ2P(\left |\xi \right |\geq \lambda D)\leq \frac{1}{1+\lambda ^{2}}. (P. 7)