Source: 2019 Jozsef Wildt International Math Competition
May 19, 2020
linear algebramatrixdeterminantcomplex numbers
Problem Statement
We consider a natural number n, n≥2 and the matrices
\begin{tabular}{cc}
A=1nn−1⋯221n⋯3321⋯4⋯⋯⋯⋯⋯nn−1n−2⋯1\end{tabular}Show thatϵndet(In−A2n)+ϵn−1det(ϵIn−A2n)+ϵn−2det(ϵ2In−A2n)+⋯+det(ϵnIn−A2n)=n(−1)n−1[2nn(n+1)]2n2−4n(1+(n+1)2n(2n+(−1)n(n2n)))where ϵ∈C\R, ϵn+1=1