MathDB
Inequality on maximum value of polynomial in interval

Source:

July 12, 2012
inequalitiesalgebrapolynomialrotation

Problem Statement

Let P(z)=anzn+an1zn1++amzmP(z)=a_nz^n+a_{n-1}z^{n-1}+\ldots+a_mz^m be a polynomial with complex coefficients such that am0,an0a_m\neq 0, a_n\neq 0 and n>mn>m. Prove that maxz=1{P(z)}2aman+k=mnak2\text{max}_{|z|=1}\{|P(z)|\}\ge\sqrt{2|a_ma_n|+\sum_{k=m}^{n} |a_k|^2}