MathDB
Catalan identity

Source: 2024 CTST P13

March 24, 2024
combinatorics

Problem Statement

For a natural number nn, let Cn=1n+1(2nn)=(2n)!n!(n+1)!C_n=\frac{1}{n+1}\binom{2n}{n}=\frac{(2n)!}{n!(n+1)!} be the nn-th Catalan number. Prove that for any natural number mm, i+j+k=mCi+jCj+kCk+i=32m+3C2m+1.\sum_{i+j+k=m} C_{i+j}C_{j+k}C_{k+i}=\frac{3}{2m+3}C_{2m+1}.
Proposed by Bin Wang