MathDB
2004 Calculus #10

Source:

November 29, 2011
calculusintegrationtrigonometryinduction

Problem Statement

Let P(x)=x332x2+x+14P(x)=x^3-\tfrac{3}{2}x^2+x+\tfrac{1}{4}. Let P[1](x)=P(x)P^{[1]}(x)=P(x), and for n1n\ge1, let Pn+1(x)=P[n](P(x))P^{n+1}(x)=P^{[n]}(P(x)). Evaluate: 01P[2004](x) dx. \displaystyle\int_{0}^{1} P^{[2004]} (x) \ \mathrm{d}x.