MathDB
Moldova TST 2016,B1

Source:

February 29, 2016
Moldova

Problem Statement

If x1,x2,...,xn>0x_1,x_2,...,x_n>0 and x12+x22+...+xn2=1nx_1^2+x_2^2+...+x_n^2=\dfrac{1}{n},prove that xi+1xixi+1n3+1.\sum x_i+\sum \dfrac{1}{x_i \cdot x_{i+1}} \ge n^3+1.