MathDB
Putnam 2003 B4

Source:

June 23, 2011
Putnamcollege contests

Problem Statement

Let f(z)=az4+bz3+cz2+dz+e=a(zr1)(zr2)(zr3)(zr4)f(z) = az^4+ bz^3+ cz^2+ dz + e = a(z -r_1)(z -r_2)(z -r_3)(z -r_4) where a,b,c,d,ea, b, c, d, e are integers, a0a \not= 0. Show that if r1+r2r_1 + r_2 is a rational number, and if r1+r2r3+r4r_1 + r_2 \neq r_3 + r_4, then r1r2r_1r_2 is a rational number.