MathDB
Romania District Olympiad 2009 - Grade XI

Source:

April 10, 2011
linear algebramatrixlinear algebra unsolved

Problem Statement

Let nNn\in \mathbb{N}^* and a matrix AMn(C), A=(aij)1i,jnA\in \mathcal{M}_n(\mathbb{C}),\ A=(a_{ij})_{1\le i, j\le n} such that:
aij+ajk+aki=0, ()i,j,k{1,2,,n}a_{ij}+a_{jk}+a_{ki}=0,\ (\forall)i,j,k\in \{1,2,\ldots,n\}
Prove that rank A2\text{rank}\ A\le 2.