MathDB
Surprising n-var ineq

Source: PErA 2024/3

March 4, 2024
inequalities

Problem Statement

Let x1,x2,,xnx_1,x_2,\dots, x_n be positive real numbers such that x1+x2++xn=1x_1+x_2+\cdots + x_n=1. Prove that i=1nmin{xi1,xi}max{xi,xi+1}xi1,\sum_{i=1}^n \frac{\min\{x_{i-1},x_i\}\cdot \max\{x_i,x_{i+1}\}}{x_i}\leq 1, where we denote x0=xnx_0=x_n and xn+1=x1x_{n+1}=x_1.