MathDB
Operation on smallest positive integers not in a set

Source: IMO Shortlist 2017 C7

July 10, 2018
IMO Shortlistcombinatorics

Problem Statement

For any finite sets XX and YY of positive integers, denote by fX(k)f_X(k) the kthk^{\text{th}} smallest positive integer not in XX, and let XY=X{fX(y):yY}.X*Y=X\cup \{ f_X(y):y\in Y\}.Let AA be a set of a>0a>0 positive integers and let BB be a set of b>0b>0 positive integers. Prove that if AB=BAA*B=B*A, then A(A(A(AA))) A appears b times=B(B(B(BB))) B appears a times.\underbrace{A*(A*\cdots (A*(A*A))\cdots )}_{\text{ A appears $b$ times}}=\underbrace{B*(B*\cdots (B*(B*B))\cdots )}_{\text{ B appears $a$ times}}.
Proposed by Alex Zhai, United States