MathDB
Turkish NMO 2012 - P5

Source: Turkish NMO 2nd Round 2012 - P5

November 29, 2012
inductioninequalitiescombinatorics proposedcombinatorics

Problem Statement

Let PP be the set of all 20122012 tuples (x1,x2,,x2012)(x_1, x_2, \dots, x_{2012}), where xi{1,2,20}x_i \in \{1,2,\dots 20\} for each 1i20121\leq i \leq 2012. The set APA \subset P is said to be decreasing if for each (x1,x2,,x2012)A(x_1,x_2,\dots ,x_{2012} ) \in A any (y1,y2,,y2012)(y_1,y_2,\dots, y_{2012}) satisfying yixi(1i2012)y_i \leq x_i (1\leq i \leq 2012) also belongs to AA. The set BPB \subset P is said to be increasing if for each (x1,x2,,x2012)B(x_1,x_2,\dots ,x_{2012} ) \in B any (y1,y2,,y2012)(y_1,y_2,\dots, y_{2012}) satisfying yixi(1i2012)y_i \geq x_i (1\leq i \leq 2012) also belongs to BB. Find the maximum possible value of f(A,B)=ABABf(A,B)= \dfrac {|A\cap B|}{|A|\cdot |B|}, where AA and BB are nonempty decreasing and increasing sets (\mid \cdot \mid denotes the number of elements of the set).