MathDB
2016 CNMO Grade P5

Source: 2016 China Northern MO Grade 10, Problem 5

February 24, 2020
algebra

Problem Statement

Let θi(0,π2)(i=1,2,,n)\theta_{i}\in(0,\frac{\pi}{2})(i=1,2,\cdots,n). Prove: (i=1ntanθi)(i=1ncotθi)(i=1nsinθi)2+(i=1ncosθi)2.(\sum_{i=1}^n\tan\theta_{i})(\sum_{i=1}^n\cot\theta_{i})\geq(\sum_{i=1}^n\sin\theta_{i})^2+(\sum_{i=1}^n\cos\theta_{i})^2.