MathDB
Bounding difference of sum of fractions in an interval

Source: APMO 2018 P2

June 24, 2018
algebraAPMO

Problem Statement

Let f(x)f(x) and g(x)g(x) be given by f(x)=1x+1x2+1x4++1x2018f(x) = \frac{1}{x} + \frac{1}{x-2} + \frac{1}{x-4} + \cdots + \frac{1}{x-2018} g(x)=1x1+1x3+1x5++1x2017g(x) = \frac{1}{x-1} + \frac{1}{x-3} + \frac{1}{x-5} + \cdots + \frac{1}{x-2017}.
Prove that f(x)g(x)>2|f(x)-g(x)| >2 for any non-integer real number xx satisfying 0<x<20180 < x < 2018.