MathDB
vector spaces problem from 1st Greek MO - 1985

Source: 1985 Greece MO Grade XII p4

September 6, 2024
vectorfunctionlinear algebra

Problem Statement

Given the vector spaces V,WV,W with coefficients over a field KK and function ϕ:VW \phi :V\to W satisfying the relation : φ(λx+y)=λφ(x)+ϕ(y)\varphi(\lambda x+y)= \lambda \varphi(x)+\phi (y) for all x,yV,λKx,y \in V, \lambda \in K. Such a function is called linear.
Let Lφ={xV/φ(x)=0}L\varphi=\{x\in V/\varphi(x)=0\} , andM=φ(V)M=\varphi(V) , prove that :
(i) LφL\varphi is subspace of VV and MM is subspace of WW
(ii) Lφ=OL\varphi={O} iff φ\varphi is 111-1
(iii) Dimension of VV equals to dimension of LφL\varphi plus dimension of MM
(iv) If θ:R3R3\theta : \mathbb{R}^3\to\mathbb{R}^3 with θ(x,y,z)=(2xz,xy,x3y+z)\theta(x,y,z)=(2x-z,x-y,x-3y+z), prove that θ\theta is linear function . Find Lθ={xR3/θ(x)=0}L\theta=\{x\in {R}^3/\theta(x)=0\} and dimension of M=θ(R3)M=\theta({R}^3).