MathDB
Romania National Olympiad Grade 11 P3

Source:

April 28, 2021
real analysisTaylor expansionderivative

Problem Statement

Let f:RRf :\mathbb R \to\mathbb R a function n2 n \geq 2 times differentiable so that: limxf(x)=lR \lim_{x \to \infty} f(x) = l \in \mathbb R and limxf(n)(x)=0 \lim_{x \to \infty} f^{(n)}(x) = 0. Prove that: limxf(k)(x)=0 \lim_{x \to \infty} f^{(k)}(x) = 0 for all k{1,2,,n1} k \in \{1, 2, \dots, n - 1\} , where f(k)f^{(k)} is the k k - th derivative of ff.