MathDB
n + T(n) = 10n, whereT(n) sends first 2 digits to the end

Source: 2021 Irish Mathematical Olympiad P3

May 30, 2021
number theoryDigitsdecimal representation

Problem Statement

For each integer n100n \ge 100 we define T(n)T(n) to be the number obtained from nn by moving the two leading digits to the end. For example, T(12345)=34512T(12345) = 34512 and T(100)=10T(100) = 10. Find all integers n100n \ge 100 for which n+T(n)=10nn + T(n) = 10n.