MathDB
Romania District Olympiad 2001 - Grade XI

Source:

March 16, 2011
limitinductioninequalitiesreal analysisreal analysis unsolved

Problem Statement

Prove that:
a) the sequence an=1n+1+1n+2++1n+n, n1a_n=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n},\ n\ge 1 is monotonic.
b) there is a sequence (an)n1{0,1}(a_n)_{n\ge 1}\in \{0,1\} such that:
limn(a1n+1+a2n+2++ann+n)=12\lim_{n\to \infty} \left(\frac{a_1}{n+1}+\frac{a_2}{n+2}+\ldots +\frac{a_n}{n+n}\right)=\frac{1}{2}
Radu Gologan