MathDB
Acute triangle with perpendicular lines

Source: RMO, Grade 7, Problem 1

April 30, 2008
trigonometrygeometrycircumcirclegeometric transformation

Problem Statement

Let ABC ABC be an acute angled triangle with B>C \angle B > \angle C. Let D D be the foot of the altitude from A A on BC BC, and let E E be the foot of the perpendicular from D D on AC AC. Let F F be a point on the segment (DE) (DE). Show that the lines AF AF and BF BF are perpendicular if and only if EF\cdot DC \equal{} BD \cdot DE.