MathDB
3-var ineq, a+b+c=1

Source: Belarus 2014

February 22, 2020
InequalityalgebraBelarus

Problem Statement

Let a,b,ca,b,c be positive real numbers such that a+b+c=1a+b+c=1. Prove that a2(b+c)3+b2(c+a)3+c2(a+b)398\frac{a^2}{(b+c)^3}+\frac{b^2}{(c+a)^3}+\frac{c^2}{(a+b)^3}\geq \frac98