MathDB
Probability of Quadrilateral in a Circle

Source:

January 11, 2009
probability

Problem Statement

Six points on a circle are given. Four of the chords joining pairs of the six points are selected at random. What is the probability that the four chords are the sides of a convex quadrilateral? <spanclass=latexbold>(A)</span> 115<spanclass=latexbold>(B)</span> 191<spanclass=latexbold>(C)</span> 1273<spanclass=latexbold>(D)</span> 1455<spanclass=latexbold>(E)</span> 11365 <span class='latex-bold'>(A)</span>\ \frac{1}{15}\qquad <span class='latex-bold'>(B)</span>\ \frac{1}{91}\qquad <span class='latex-bold'>(C)</span>\ \frac{1}{273}\qquad <span class='latex-bold'>(D)</span>\ \frac{1}{455}\qquad <span class='latex-bold'>(E)</span>\ \frac{1}{1365}