MathDB
Function Unbounded

Source: 2012 AMC 12 B #24

February 23, 2012
functionfloor functionnumber theoryprime factorizationAMC

Problem Statement

Define the function f1f_1 on the positive integers by setting f1(1)=1f_1(1)=1 and if n=p1e1p2e2...pkekn=p_1^{e_1}p_2^{e_2}...p_k^{e_k} is the prime factorization of n>1n>1, then f1(n)=(p1+1)e11(p2+1)e21(pk+1)ek1.f_1(n)=(p_1+1)^{e_1-1}(p_2+1)^{e_2-1}\cdots (p_k+1)^{e_k-1}. For every m2m \ge 2, let fm(n)=f1(fm1(n))f_m(n)=f_1(f_{m-1}(n)). For how many NN in the range 1N4001 \le N \le 400 is the sequence (f1(N),f2(N),f3(N),...)(f_1(N), f_2(N), f_3(N),...) unbounded?
Note: a sequence of positive numbers is unbounded if for every integer BB, there is a member of the sequence greater than BB.
<spanclass=latexbold>(A)</span> 15<spanclass=latexbold>(B)</span> 16<spanclass=latexbold>(C)</span> 17<spanclass=latexbold>(D)</span> 18<spanclass=latexbold>(E)</span> 19 <span class='latex-bold'>(A)</span>\ 15 \qquad<span class='latex-bold'>(B)</span>\ 16 \qquad<span class='latex-bold'>(C)</span>\ 17 \qquad<span class='latex-bold'>(D)</span>\ 18\qquad<span class='latex-bold'>(E)</span>\ 19