MathDB
Romania TST 2016 Day 3 P2

Source: Romania TST 2016 Day 3 P2

November 1, 2017
number theory

Problem Statement

Given a positive integer kk and an integer a3(mod8)a\equiv 3 \pmod{8}, show that am+a+2a^m+a+2 is divisible by 2k2^k for some positive integer mm.