MathDB
Maximum number of distinct elements in sequence of inverses

Source: Baltic Way 2010

November 19, 2010
modular arithmeticnumber theory proposednumber theory

Problem Statement

Let pp be a prime number. For each kk, 1kp11\le k\le p-1, there exists a unique integer denoted by k1k^{-1} such that 1k1p11\le k^{-1}\le p-1 and k1k=1(modp)k^{-1}\cdot k=1\pmod{p}. Prove that the sequence 1^{-1},  1^{-1}+2^{-1},  1^{-1}+2^{-1}+3^{-1},  \ldots ,  1^{-1}+2^{-1}+\ldots +(p-1)^{-1} (addition modulo pp) contains at most p+12\frac{p+1}{2} distinct elements.