MathDB
Prove this trigonometric inequality with complex numbers

Source: 2019 Jozsef Wildt International Math Competition

May 19, 2020
inequalitiestrigonometrycomplex numbers

Problem Statement

Consider the complex numbers a1,a2,,ana_1, a_2,\cdots , a_n, n2n \geq 2. Which have the following properties:
[*] ai=1|a_i|=1 \forall i=1,2,,ni=1,2,\cdots , n [*] k=1narg(ak)π\sum \limits_{k=1}^n arg(a_k)\leq \pi
Show that the inequality(n2cot(π2n))1k=0n(1)k[3n2(8k+5)n+4k(k+1)σk](1+1n)2cot2(π2n)+16k=0n(1)kσk\left(n^2\cot \left(\frac{\pi}{2n}\right)\right)^{-1}\left |\sum \limits_{k=0}^n(-1)^k\left[3n^2-(8k+5)n+4k(k+1)\sigma_k\right]\right |\geq \sqrt{\left(1+\frac{1}{n}\right)^2\cot^2 \left(\frac{\pi}{2n}\right)}+16\left |\sum \limits_{k=0}^n(-1)^k\sigma_k\right |where σ0=1\sigma_0=1, σk=1i1i2iknai1ai2aik\sigma_k=\sum \limits_{1\leq i_1\leq i_2\leq \cdots \leq i_k\leq n}a_{i_1}a_{i_2}\cdots a_{i_k}, \forall k=1,2,,nk=1,2,\cdots , n