MathDB
Problems
Contests
National and Regional Contests
Bosnia Herzegovina Contests
Junior Regional - Federation of Bosnia Herzegovina
2018 Junior Regional Olympiad - FBH
4
Junior Regional Olympiad - FBH 2018 Grade 8 Problem 4
Junior Regional Olympiad - FBH 2018 Grade 8 Problem 4
Source:
September 19, 2018
inequalities
positive real
Problem Statement
Let
a
a
a
,
b
b
b
and
c
c
c
be positive real numbers such that
a
≥
b
≥
c
a \geq b \geq c
a
≥
b
≥
c
. Prove the inequality:
a
b
+
b
c
+
c
a
≤
b
a
+
c
b
+
a
c
\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \leq \frac{b}{a}+\frac{c}{b}+\frac{a}{c}
b
a
+
c
b
+
a
c
≤
a
b
+
b
c
+
c
a
Back to Problems
View on AoPS