Polynomials
Source: Serbia TST 2022, Problem 1
May 31, 2023
polynomialalgebra
Problem Statement
For a non-constant polynomial , we say that is symmetric if for every . We define the weight of a non-constant polynomial , denoted by , as the multiplicity of its zero with the highest multiplicity.a) Prove that there exist non-constant, monic, pairwise distinct polynomials , none of which is symmetric, such that the product of any two (distinct) polynomials is symmetric.b) What is the smallest possible value of , if are non-constant, monic, pairwise distinct polynomials, none of which is symmetric, and the product of any two (distinct) polynomials is symmetric?