MathDB
Polynomial identity

Source:

August 29, 2010
algebrapolynomialalgebra proposed

Problem Statement

For each non-negative integer nn, Fn(x)F_n(x) is a polynomial in xx of degree nn. Prove that if the identity Fn(2x)=r=0n(1)nr(nr)2rFr(x)F_n(2x)=\sum_{r=0}^{n} (-1)^{n-r} \binom nr 2^r F_r(x) holds for each n, then Fn(tx)=r=0n(nr)tr(1t)nrFr(x)F_n(tx)=\sum_{r=0}^{n} \binom nr t^r (1-t)^{n-r} F_r(x)