MathDB
Putnam 2011 A5

Source:

December 5, 2011
Putnamfunctionvectorcalculusderivativecollege contests

Problem Statement

Let F:R2RF:\mathbb{R}^2\to\mathbb{R} and g:RRg:\mathbb{R}\to\mathbb{R} be twice continuously differentiable functions with the following properties:
F(u,u)=0F(u,u)=0 for every uR;u\in\mathbb{R};
• for every xR,g(x)>0x\in\mathbb{R},g(x)>0 and x2g(x)1;x^2g(x)\le 1;
• for every (u,v)R2,(u,v)\in\mathbb{R}^2, the vector F(u,v)\nabla F(u,v) is either 0\mathbf{0} or parallel to the vector g(u),g(v).\langle g(u),-g(v)\rangle.
Prove that there exists a constant CC such that for every n2n\ge 2 and any x1,,xn+1R,x_1,\dots,x_{n+1}\in\mathbb{R}, we have minijF(xi,xj)Cn.\min_{i\ne j}|F(x_i,x_j)|\le\frac{C}{n}.