MathDB
(|a_1-b_1|+|a_2-b_2|+...+|a_n-b_n| , |a_1-c_1|+|a_2-c_2|+...+|a_n-c_n| ) \ge 2

Source: IMAC Arhimede 2012 p1

May 6, 2019
number theorygreatest common divisorpermutationscombinatorics

Problem Statement

Let a1,a2,...,ana_1,a_2,..., a_n be different integers and let (b1,b2,...,bn),(c1,c2,...,cn)(b_1,b_2,..., b_n),(c_1,c_2,..., c_n) be two of their permutations, different from the identity. Prove that (a1b1+a2b2+...+anbn,a1c1+a2c2+...+ancn)2(|a_1-b_1|+|a_2-b_2|+...+|a_n-b_n| , |a_1-c_1|+|a_2-c_2|+...+|a_n-c_n| ) \ge 2 where (x,y)(x,y) denotes the greatest common divisor of the numbers x,yx,y