MathDB
CIIM 2012 Problem 2

Source:

June 9, 2016
CIIMCIIM 2012undergraduate

Problem Statement

A set AZA\subset \mathbb{Z} is "padre" if whenever x,yAx,y \in A with xyx\leq y then also 2yxA2y -x \in A. Prove that if AA is "padre", 0,a,bA0,a,b \in A with 0<a<b0< a < b and d=g.c.d(a,b)d = g.c.d(a,b) then a+b3d,a+b2dA.a+b-3d, a+b-2d \in A.