MathDB
Macedonia National Olympiad 2017 Problem 3 Inequality

Source: Macedonia National Olympiad 2017, Problem 3

April 8, 2017
inequalities

Problem Statement

Let x,y,zRx,y,z \in \mathbb{R} such that xyz=1xyz = 1. Prove that:
(x4+z2y2)(y4+x2z2)(z4+y2x2)(x2y+1)(y2z+1)(z2x+1).\left(x^4 + \frac{z^2}{y^2}\right)\left(y^4 + \frac{x^2}{z^2}\right)\left(z^4 + \frac{y^2}{x^2}\right) \ge \left(\frac{x^2}{y} + 1 \right)\left(\frac{y^2}{z} + 1 \right)\left(\frac{z^2}{x} + 1 \right).