MathDB
Product of Polynomials with Powers of Two as Exponents

Source: 2012 AMC 12A Problem #20

February 8, 2012
algebrapolynomialAMC

Problem Statement

Consider the polynomial P(x)=k=010(x2k+2k)=(x+1)(x2+2)(x4+4)(x1024+1024).P(x)=\prod_{k=0}^{10}(x^{2^k}+2^k)=(x+1)(x^2+2)(x^4+4)\cdots(x^{1024}+1024). The coefficient of x2012x^{2012} is equal to 2a2^a. What is aa?
<spanclass=latexbold>(A)</span> 5<spanclass=latexbold>(B)</span> 6<spanclass=latexbold>(C)</span> 7<spanclass=latexbold>(D)</span> 10<spanclass=latexbold>(E)</span> 24 <span class='latex-bold'>(A)</span>\ 5\qquad<span class='latex-bold'>(B)</span>\ 6\qquad<span class='latex-bold'>(C)</span>\ 7\qquad<span class='latex-bold'>(D)</span>\ 10\qquad<span class='latex-bold'>(E)</span>\ 24