MathDB
Obligatory Log

Source: 2023 AMC 12A Problem 19

November 9, 2023
2023 AMC 12AAMCAMC 122023 AMC

Problem Statement

What is the product of all the solutions to the equation log7x2023log289x2023=log2023x2023?\log_{7x}2023 \cdot \log_{289x} 2023 = \log_{2023x} 2023?
<spanclass=latexbold>(A)</span>(log20237log2023289)2<spanclass=latexbold>(B)</span>log20237log2023289<spanclass=latexbold>(C)</span>1<spanclass=latexbold>(D)</span>log72023log2892023<spanclass=latexbold>(E)</span>(log72023log2892023)2<span class='latex-bold'>(A) </span>(\log_{2023}7 \cdot \log_{2023}289)^2 \qquad<span class='latex-bold'>(B) </span>\log_{2023}7 \cdot \log_{2023}289\qquad<span class='latex-bold'>(C) </span>1\qquad<span class='latex-bold'>(D) </span>\log_{7}2023 \cdot \log_{289}2023\qquad<span class='latex-bold'>(E) </span>(\log_{7}2023 \cdot \log_{289}2023)^2