MathDB
2014 BMT Team 9 limit

Source:

January 6, 2022
calculus

Problem Statement

Two different functions f,gf, g of xx are selected from the set of real-valued functions {sinx,ex,xlnx,arctanx,x2+xx2+xx,1x}\left \{sin x, e^{-x}, x \ln x, \arctan x, \sqrt{x^2 + x} -\sqrt{x^2 + x} -x, \frac{1}{x} \right \} to create a product function f(x)g(x)f(x)g(x). For how many such products is limxinftyf(x)g(x)\lim_{x\to infty} f(x)g(x) finite?