MathDB
Difference between AM and GM

Source: 1964 AHSME Problem 37

March 19, 2014
algebradifference of squaresspecial factorizationsAMC

Problem Statement

Given two positive number aa, bb such that a<ba<b. Let A.M. be their arithmetic mean and let G.M. be their positive geometric mean. Then A.M. minus G.M. is always less than:
<spanclass=latexbold>(A)</span>(b+a)2ab<spanclass=latexbold>(B)</span>(b+a)28b<spanclass=latexbold>(C)</span>(ba)2ab<span class='latex-bold'>(A) </span>\dfrac{(b+a)^2}{ab}\qquad<span class='latex-bold'>(B) </span>\dfrac{(b+a)^2}{8b}\qquad<span class='latex-bold'>(C) </span>\dfrac{(b-a)^2}{ab}
<spanclass=latexbold>(D)</span>(ba)28a<spanclass=latexbold>(E)</span>(ba)28b<span class='latex-bold'>(D) </span>\dfrac{(b-a)^2}{8a}\qquad <span class='latex-bold'>(E) </span>\dfrac{(b-a)^2}{8b}