algebradifference of squaresspecial factorizationsAMC
Problem Statement
Given two positive number a, b such that a<b. Let A.M. be their arithmetic mean and let G.M. be their positive geometric mean. Then A.M. minus G.M. is always less than:<spanclass=′latex−bold′>(A)</span>ab(b+a)2<spanclass=′latex−bold′>(B)</span>8b(b+a)2<spanclass=′latex−bold′>(C)</span>ab(b−a)2<spanclass=′latex−bold′>(D)</span>8a(b−a)2<spanclass=′latex−bold′>(E)</span>8b(b−a)2