MathDB
IMC 1994 D1 P5

Source:

March 6, 2017
IMCcalculusreal analysis

Problem Statement

a) Let fC[0,b]f\in C[0,b], gC(R)g\in C(\mathbb R) and let gg be periodic with period bb. Prove that 0bf(x)g(nx)dx\int_0^b f(x) g(nx)\,\mathrm dx has a limit as nn\to\infty and limn0bf(x)g(nx)dx=1b0bf(x)dx0bg(x)dx\lim_{n\to\infty}\int_0^b f(x)g(nx)\,\mathrm dx=\frac 1b \int_0^b f(x)\,\mathrm dx\cdot\int_0^b g(x)\,\mathrm dx
b) Find limn0πsinx1+3cos2nxdx\lim_{n\to\infty}\int_0^\pi \frac{\sin x}{1+3\cos^2nx}\,\mathrm dx