MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2018 Harvard-MIT Mathematics Tournament
5
2018 Algebra / NT #5
2018 Algebra / NT #5
Source:
February 12, 2018
Problem Statement
Let
{
ω
1
,
ω
2
,
⋯
,
ω
100
}
\{\omega_1,\omega_2,\cdots,\omega_{100}\}
{
ω
1
,
ω
2
,
⋯
,
ω
100
}
be the roots of
x
101
−
1
x
−
1
\frac{x^{101}-1}{x-1}
x
−
1
x
101
−
1
(in some order). Consider the set
S
=
{
ω
1
1
,
ω
2
2
,
ω
3
3
,
⋯
,
ω
100
100
}
.
S=\{\omega_1^1,\omega_2^2,\omega_3^3,\cdots,\omega_{100}^{100}\}.
S
=
{
ω
1
1
,
ω
2
2
,
ω
3
3
,
⋯
,
ω
100
100
}
.
Let
M
M
M
be the maximum possible number of unique values in
S
,
S,
S
,
and let
N
N
N
be the minimum possible number of unique values in
S
.
S.
S
.
Find
M
−
N
.
M-N.
M
−
N
.
Back to Problems
View on AoPS