MathDB
2018 Algebra / NT #5

Source:

February 12, 2018

Problem Statement

Let {ω1,ω2,,ω100}\{\omega_1,\omega_2,\cdots,\omega_{100}\} be the roots of x1011x1\frac{x^{101}-1}{x-1} (in some order). Consider the set S={ω11,ω22,ω33,,ω100100}.S=\{\omega_1^1,\omega_2^2,\omega_3^3,\cdots,\omega_{100}^{100}\}. Let MM be the maximum possible number of unique values in S,S, and let NN be the minimum possible number of unique values in S.S. Find MN.M-N.