MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Princeton University Math Competition
2011 Princeton University Math Competition
A7 / B8
2011 PUMaC Algebra A7 / B8
2011 PUMaC Algebra A7 / B8
Source:
September 24, 2019
algebra
Problem Statement
Let
α
1
,
α
2
,
…
,
α
6
\alpha_1,\alpha_2,\dots,\alpha_6
α
1
,
α
2
,
…
,
α
6
be a fixed labeling of the complex roots of
x
6
−
1
x^6-1
x
6
−
1
. Find the number of permutations
{
α
i
1
,
α
i
2
,
…
,
α
i
6
}
\{\alpha_{i_1},\alpha_{i_2},\dots,\alpha_{i_6}\}
{
α
i
1
,
α
i
2
,
…
,
α
i
6
}
of these roots such that if
P
(
α
1
,
…
,
α
6
)
=
0
P(\alpha_1, \dots, \alpha_6) = 0
P
(
α
1
,
…
,
α
6
)
=
0
, then
P
(
α
i
1
,
…
,
α
i
6
)
=
0
P(\alpha_{i_1},\dots,\alpha_{i_6}) = 0
P
(
α
i
1
,
…
,
α
i
6
)
=
0
, where
P
P
P
is any polynomial with rational coefficients.
Back to Problems
View on AoPS