MathDB
cauchy´s functional equation

Source: Romanian District Olympiad 2015, Grade X, Problem 4

September 25, 2018
functionalgebrafunctional equation

Problem Statement

Let f:(0,)(0,) f: (0,\infty)\longrightarrow (0,\infty) a non-constant function having the property that f\left( x^y\right) = \left( f(x)\right)^{f(y)}, \forall x,y>0. Show that f(xy)=f(x)f(y) f(xy)=f(x)f(y) and f(x+y)=f(x)+f(y), f(x+y)=f(x)+f(y), for all x,y>0. x,y>0.