MathDB
Solve the equation

Source:

September 8, 2010
number theoryequationpolynomialDiophantine equationIMO Shortlist

Problem Statement

Let nn be a positive integer and a1,a2,,a2na_1, a_2, \dots , a_{2n} mutually distinct integers. Find all integers xx satisfying (xa1)(xa2)(xa2n)=(1)n(n!)2.(x - a_1) \cdot (x - a_2) \cdots (x - a_{2n}) = (-1)^n(n!)^2.