MathDB
IMAR Test 2018 P3

Source: IMAR Test 2018 P3

April 21, 2021
combinatoricsSetsromania

Problem Statement

Let SS be a finite set and let P(S)\mathcal{P}(S) be its power set, i.e., the set of all subsets of SS, the empty set and SS, inclusive. If A\mathcal{A} and B\mathcal{B} are non-empty subsets of P(S),\mathcal{P}(S), let AB={X:XAB,AA,BB}.\mathcal{A}\vee \mathcal{B}=\{X:X\subseteq A\cup B,A\in\mathcal{A},B\in\mathcal{B}\}. Given a non-negative integer nS,n\leqslant |S|, determine the minimal size AB\mathcal{A}\vee \mathcal{B} may have, where A\mathcal{A} and B\mathcal{B} are non-empty subsets of P(S)\mathcal{P}(S) such that A+B>2n|\mathcal{A}|+|\mathcal{B}|>2^n.
Amer. Math. Monthly